Name:
Period:
Directions: Show all work in a way that would earn you credit on the AP Test!

1) Consider the reaction: $\mathbf{2} \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$

The following data were obtained from three experiments using the method of initial rates:

|  | Initial [NO] mol L-1 | Initial [O2] mol L- |  |
| :--- | :---: | :---: | :---: |
| Exp. 1 | 0.010 | Initial Rate $[\mathrm{NO}] \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |  |
| Exp. 2 | 0.020 | 0.010 | $2.5 \times 10^{-5}$ |
| Exp. 3 | 0.010 | 0.020 | $1.0 \times 10^{-4}$ |
|  |  |  |  |


e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, what is the rate at which $\mathrm{O}_{2}$ is reactant and $\mathrm{NO}_{2}$ is forming? (Hint: Use coefficients)
2) The reaction $\mathbf{2} \mathbf{N O}(\mathrm{g})+\mathbf{2} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{g})$ was studied at $904{ }^{\circ} \mathrm{C}$, and the data in the table were collected.

|  | Initial $[\mathrm{NO}] \mathrm{mol} \mathrm{L}^{-1}$ | Initial $\left[\mathrm{H}_{2}\right] \mathrm{mol} \mathrm{L}^{-1}$ | Initial Rate $\left[\mathrm{N}_{2}\right] \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |
| :--- | :---: | :---: | :---: |
| Exp. 1 | 0.420 | 0.122 | 0.136 |
| Exp. 2 | 0.210 | 0.122 | 0.0339 |
| Exp. 3 | 0.210 | 0.244 | 0.0678 |
| Exp. 4 | 0.105 | 0.488 | 0.0339 |

a) Determine the order of the reaction for each reactant.
c) Calculate the rate constant at $904^{\circ} \mathrm{C}$.
b) Write the rate equation for the reaction
d) Find the rate of appearance of $\mathrm{N}_{2}$ at the instant when $[\mathrm{NO}]=0.350 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.205 \mathrm{M}$

## Dougherty Valley HS Chemistry - AP

3) The reaction of tbutyl-bromide $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ with water is represented by the equation:
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}$
The following data were obtained from three experiments using the method of initial rates:

|  | Initial $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right] \mathrm{mol} \mathrm{L-}$ | Initial $\left[\mathrm{H}_{2} \mathrm{O}\right] \mathrm{mol} \mathrm{L}^{-1}$ | Initial Rate $[\mathrm{NO}] \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |
| :--- | :---: | :---: | :---: |
| Exp. | $5.0 \times 10^{-2}$ | $2.0 \times 10^{-2}$ | $2.0 \times 10^{-6}$ |
| Exp. 2 | $5.0 \times 10^{-2}$ | $4.0 \times 10^{-2}$ | $2.0 \times 10^{-6}$ |
| Exp. 3 | $1.0 \times 10^{-1}$ | $4.0 \times 10^{-2}$ | $4.0 \times 10^{-6}$ |

a) What is the order with respect to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ ?
c) What is the overall order of the reaction?
e) e. Calculate the rate constant, k, for the reaction.
b) What is the order with respect to $\mathrm{H}_{2} \mathrm{O}$ ?
d) Write the rate equation
4) Hydrogen Sulfide is oxidized by chlorine in aqueous solution.

$$
\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})
$$

The experimental rate law is: Rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{~S}\right]\left[\mathrm{Cl}_{2}\right]$

| a) What is the reaction order with |
| :--- | :--- | :--- |
| respect to $\mathrm{H}_{2} \mathrm{~S}$ ? |$\quad$| b) What is the reaction order with |
| :--- |
| respect to $\mathrm{Cl}_{2}$ ? |$\quad$ c) What is the overall order? $\quad$|  |
| :--- |

5) For the reaction of nitric oxide, NO , with chlorine, $\mathrm{Cl}_{2}$,
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})$
The observed rate law is: Rate $=\mathrm{k}\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.$;

| a) What is the reaction order with |
| :--- | :--- | :--- |
| respect to NO? | | b) What is the reaction order with |
| :--- |
| respect to $\mathrm{Cl}_{2}$ ? |$\quad$ c) What is the overall order?

6) In experiments on the decomposition of azomethane,
$\mathrm{CH}_{3} \mathrm{NNCH}_{3}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$
The following data were obtained:
Initial $\left[\mathrm{CH}_{3} \mathbf{N N C H}_{3}\right] \mathrm{mol} \mathrm{L}^{-}$
$\begin{array}{llc}\text { Exp. } 1 & 1.13 \times 10^{-2} & 2.8 \times 10^{-6} \\ \text { Exp. } 2 & 2.26 \times 10^{-2} & 5.6 \times 10^{-6}\end{array}$
a) What is the rate law?
b) What is the value of the rate constant?

## Dougherty Valley HS Chemistry - AP

Kinetics - Method of Initial Rates
7) Nitric Oxide, NO , reacts with hydrogen to give nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$, and water:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

In a series of experiments, the following initial rates of disappearance of NO were obtained:

|  | Initial $[\mathrm{NO}(\mathrm{g})] \mathrm{mol} \mathrm{L}^{-1}$ | Initial $\left[\mathrm{H}_{2}(\mathrm{~g})\right] \mathrm{mol} \mathrm{L}^{-1}$ | Initial Rate $[\mathrm{NO}] \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |
| :--- | :---: | :---: | :---: |
| Exp. | $6.4 \times 10^{-3}$ | $2.2 \times 10^{-3}$ | $2.6 \times 10^{-5}$ |
| Exp. 2 | $12.8 \times 10^{-3}$ | $2.2 \times 10^{-3}$ | $1.0 \times 10^{-4}$ |
| Exp. 3 | $6.4 \times 10^{-3}$ | $4.5 \times 10^{-3}$ | $5.1 \times 10^{-5}$ |

a) What is the rate law?
b) What is the value of the rate constant?
8) Chlorine dioxide, $\mathrm{ClO}_{2}$, is a reddish-yellow gas that is soluble in water. In basic solution it gives $\mathrm{ClO}_{3}{ }^{-}$and $\mathrm{ClO}_{2}{ }^{-}$ions.

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

To obtain the rate law for this reaction, the following experiments were run and, for each, the initial rate of reaction of ClO 2 was determined. Obtain the rate law and the value of the rate constant.

|  | Initial [CIO 2$]$ <br> $\mathrm{mol} \mathrm{L}^{-1}$ | Initial $\left[\mathrm{OH}^{-}\right]$ <br> $\mathrm{mol} \mathrm{L}^{-1}$ | Initial Rate <br> $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |
| :--- | :---: | :---: | :---: |
| Exp. 1 | 0.060 | 0.030 | 0.0248 |
| Exp. 2 | 0.020 | 0.030 | 0.00276 |
| Exp. 3 | 0.020 | 0.090 | 0.00828 |


| a) What is the rate law? | b) What is the value of the rate constant? |
| :--- | :--- |
|  |  |

